

FUNDING NO.: 92MM2528

TITLE: Effects of Endotoxin Induced Lung Injury and Exercise in Goats/Sheep

PRINCIPLE INVESTIGATOR: Thomas G. Mundie, MAJ, MS

PI ADDRESS:

Commander

Tripler Army Medical Center ATTN: HSHK-CI (MAJ Mundie)

Honolulu, HI 96859-5000

REPORT DATE: 2 June 1993

TYPE OF REPORT: Final

PREPARED FOR:

U.S. Army Medical Research and Development Command Fort Detrick Frederick, MD 21702-5012

DISTRIBUTION: Unlimited - Approved for public release

ISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE

Form Approved-OME NO: 070441480

August recommed burden fer that collection of informating allibered and fine-maining the data headed, and commodition collection of information, including supportions for the David beginney, Suite 1804, Ariengton, VA 22202-4302.	wething and never wing the collection of in	formation. Send comments in journment Services. Directorale I lucipet, Paperwork Raduction Pr	or information Coerations and Reports, 1215 Jefferson oyers 10704-01881. Westengron, OC 20508.					
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE 2 June 93	3. report type at 1 Februar	ruary 1992 to 2 June 1993					
4. TITLE AND SUBTINE Effects of Endotoxin-Indu- Goats/Sheep	ced Lung Injury and	Exercise in	5. FUNDING NUMBERS 92MM2528					
Thomas G. Mundie, MAJ	, MS							
7. PERFORMING ORGANIZATION NAMES Commander Tripler Army Medical Ce ATTN: HSHK-CI Honolulu, HI 96859			B. PERFORMING ORGANIZATION REPORT NUMBER					
9. SPONSORING/MONITORING AGENCY U.S. Army Medical Resear Fort Detrick, Frederick,	ch & Development Co		10. SPONSORING/MONITORING AGENCY REPORT NUMBER					
11. SUPPLEMENTARY NOTES								
124. OISTRIBUTION/AVAILABILITY STAT Unlimited - Approved for			126. DISTRIBUTION CODE					

13. ABSTRACT (Maximum 200 words)

This study was designed the effects of exercise performed on animals already injured with E. coli endotoxin. This would tell us whether exercise makes the lung injury worse. It would also tell us how much exercise performance is impaired. These studies were designed to give further insights into the underlying causes of acute lung injury. Premature termination of the study prevented completion of the research project. It appeared from the limited experimentation conducted that maximal exercise was impaired by endotoxin-induced lung injury. Conclusions regarding exacerbation of endotoxin-induced lung injury cannot be made.

acute lung injury, ma	aximal exercise, endotox	cin .	15 NUMBER OF PAGES 22 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION UNCLASSIFIED	19. SECURITY CLASSIFICATION UNCLASSIFIED	20. LIMITATION OF ABSTRACT Unlimited

FOREWORD

The opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the U.S. Army

In conducting research using animals, the investigator adhered to the "Guide for the care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

DESCRIPTION OF PROPERTY &

Access	on For		/
NTIS DTIC TO	AB		
			3
	Ave: 1 - 3 Speci	का अंदिर	

TABLE OF CONTENTS

INTRODUCTION	Page 4
BODY	Page 7
CONCLUSIONS	Page 9
REFERENCES	Page 10

INTRODUCTION

Acute lung injury is likely to occur from the consequences of the modern battlefield.

- Nitrogen dioxide (NO₂) and various acid halides (HF, HBr, HCl) can be found in extremely high concentrations when an anti-tank round penetrates an armored vehicle (1).
- Many chemical and biological agents target the pulmonary system as their route of exposure.
- Exposure to intense blast overpressure occurs behind defeated armor and around various high explosive munitions (1).

Acute lung injury from these causes is characterized by pulmonary edema, inflammation and hemorrhage. While the pathologic presentation of these injuries is similar, studies to date have shown that post-exposure exercise causes different effects (see Status below). It would be of benefit to the field commander to know, for these potential injuries, how physical activity after a lung insult will affect the severity of injury. Treadmill exercise tests in goats/sheep allow a means of evaluating the effects of exercise on the severity of lung injury.

The exacerbation of injury by exercise will yield important information on the underlying pathophysiological mechanisms of lung injury. This is particularly important because soldiers might be exposed to a variety of acute lung injury mechanisms (e.g., blast, NO₂, halides, chemical agents, toxins, etc.), which present with pulmonary edema but which respond differently with exercise. Analysis of the time course of injury exacerbation gives a better understanding of microvascular permeability increases and its underlying causes.

The most common cause of Adult Respiratory Distress Syndrome (ARDS) is gramnegative sepsis, and endotoxins are believed to be the offending agents which cause injury to various organ systems including the lungs (2). The last ten years has seen a large number of investigations of the effects of endotoxin lung injury in animals (3). Most popular has seemed to be the intravenous infusion of \underline{E} . coli endotoxin into unanesthetized sheep. This animal model produces effects which are very similar to clinical ARDS, namely diffuse noncadiogenic lung edema, hypoxemia and decreased lung compliance. The investigations using this model have focused on trying to determine the underlying mechanisms of the acute lung injury. Our proposed studies will explore the relationship of endotoxin lung injury and exercise so that future studies (see Future Studies below) will investigated the mechanisms of this interaction as well as ARDS alone.

Animal models of exercise are being increasingly used where invasive measurements are needed or when the effects of exercise on abnormal states are being investigated. Sheep have proven to be a better model of maximal exercise than rats, dogs, or horses (4).

Few studies have focused on the effect that acute lung injury has on the exacerbating effects of exercise on acute lung injury. Maximal exercise performed immediately and up to 24 hr after exposure significantly worsens NO₂-induced lung injury (5). However, pulmonary contusion injury is worsened by maximal exercise performed 1 hr after exposure but not by 24 hr exercise (6). It has been proposed that exercise performed before the onset of increased microvascular permeability would not exacerbate injury while exercise performed after the onset of edema would exacerbate injury. Studies by Lehnert and Stavert (7), however, did not show this. Exercise performed during the latency period after inhalation exposure to perfluroisobutylene (PFIB) (i.e. no pulmonary edema for 8 hrs) did not exacerbate lung injury. However, exercise performed during the latency period after inhalation exposure to bis(trifluromethyl)disulfide (TFD) (i.e. no pulmonary edema for 3 hrs) did exacerbate pulmonary edema and inflammation. It is clear from these studies that the interaction of acute lung injury and exercise will differ depending on the cause of the lung injury. The etiology of this difference is unknown.

The present study proposes to study the exercise exacerbating effects using an accepted model of acute lung injury. Infusion of <u>E. coli</u> endotoxin into the pulmonary artery causes pulmonary hypertension and increased lung vascular permeability resulting in pulmonary edema (8-9). Infiltration of granulocytes and release of arachidonic acid metabolites into the blood and lymph are hallmarks (10-11). We propose to investigate the effects of post-exposure exercise on lung injury induced by endotoxin administration. Endotoxin injury was chosen for several reasons:

- 1. Endotoxin lung injury is a well accepted model of acute lung injury with numerous publications using the model. However, the effects of exercise and endotoxin injury have not been described. We hope to put together what is known about this lung injury model with exercise data from this study to gain further insight into the interaction of lung injury and exercise.
- 2. Endotoxin lung injury can be induced safely in a laboratory without expensive or complicated facilities.
- 3. The results would be directly applicable to the soldier in the field who might be exposed to a variety of biological warfare weapons which use biological toxins.

Endotoxin lung injury differs from other lung injury models which have been used with exercise. Endotoxin lung injury is induced by systemic endotoxemia as opposed to the inhalation route of administration used with the other models. As a result, endotoxin lung injury has little or no latency period before the presentation of overt lung injury (i.e. edema, inflammation). In addition, pulmonary hypertension is a characteristic of endotoxin lung injury which is not been reported in the other lung

injury models. The extent to which these differences affect the interaction of lung injury and exercise is unclear.

BODY

METHODS

a. <u>Surgery</u>: All animals were surgically prepared with a chronic carotid loop to facilitate collection of arterial blood. Surgeries were performed in the surgical Suite, Bldg 40. Animals were allowed to recover at least 3 weeks before treadmill training was begun.

b. Treadmill Training: Sheep/goats were exercised with the use of a treadmill fitted with a cage surrounding the treadmill belt. Speed and grade (elevation, angle of inclination) were independently varied. The animals' heads were minimally restrained with a set of vertical padded bars placed behind the caudal aspect of the mandibles. A canine anesthesia mask modified with a 3 cm i.d. connector was held on the animal with a muzzle. A 2-way non-rebreathing valve for direction of inspired and expired air was attached to the muzzle. Expired air was conducted by 4 cm i.d. corrugated tubing a exercise data acquisition system (Horizon, Sensormetik). Oxygen consumption $(\dot{V}o_2)$ was calculated from \dot{V}_E and F_Eo_2 .

All animals were kept closely sheared in order to avoid overheating during exercise. Hooves were kept trim. Sheep/goats were run at 1.5 mph for 2 min and then 3 mph for 8 min at 0% grade every day for 2 weeks. During the 3rd and 4th weeks, animals were run at 1.5 mph for 2 min, 3 mph for 2 min and 4 mph for 10 min three times per week (preferably with a day of rest between challenges).

c. <u>Data Collection</u>: Prior to data collection (i.e. not during treadmill training), the sheep/goats were fasted for 24 hr but were allowed free access to water. Cardiopulmonary parameters as well as arterial and venous blood gases and CO-oximetry and peripheral white blood cell count were collected at the specified time periods and used to monitor the severity of lung injury. After topical anesthesia, animals were intubated nasotracheally using a fiberoptic bronchoscope and prepared with an arterial catheter and a venous thermodilution catheter as well as an esophageal balloon. Measurements of lung resistance, dynamic compliance, FRC, cardiac output, mean arterial and pulmonary arterial pressures, shunt fraction, systemic vascular pressure and pulmonary vascular pressure were made. Duplicate 1 ml blood samples were collected in heparinized syringes for blood gas and CO-oximetry. Five (5) ml of venous blood were collected for white blood cell count determination.

Prior to exercise challenge, the animal were extubated and the esophageal balloon removed. Indwelling arterial and thermodilution catheters remained for the exercise challenge. Arterial and pulmonary arterial pressures were monitored continuously during exercise. Arterial and venous blood were collected every 1.5 min during exercise for determination blood gases and CO-oximetry.

At the completion of the studies animals were euthanitized with an overdose of I.V. Pentobarbital. The sheep were placed in dorsal recumbency and the carotid arteries severed to allow for rapid exsanguination. The lungs, trachea, and heart will be removed *in toto*. The heart were cut away, any frank blood or fluid were drained and the lungs weighed.

RESULTS

Results of the 2 goats performed on this protocol are included in Appendix A and B.

CONCLUSIONS

No definitive conclusions can be made from these data since insufficient data was collected. It seems clear that if more animals had been performed, endotoxin would have been shown to decrease exercise capacity. A significant decrease in $\dot{V}o_2$ was observed in both animals.

Several agents have been used to investigate the mechanisms of endotoxin lung injury. Studies to date seem to show that LPS-induced pulmonary hypertension and increased lung permeability are the result of different mechanisms. Thromboxane inhibitors attenuate pulmonary hypertension but not lung permeability changes (12-13). In addition, neutrophil depletion reduces increased pulmonary vascular permeability without affecting pulmonary hypertension (14). Other agents have been shown to attenuate both hypertension and edema including prostaglandin E_2 (15), calcium channel inhibitors (16), and steroids (17-18). On the other hand, diethylcarbamazine, a lipoxygenase inhibitor, did not affect the pulmonary vascular response to endotoxin (19). This protocol proposed to characterize the interaction of endotoxin lung injury and exercise. Future studies in this area should investigate the effect of some of these inhibitors, particularly those that modulate vascular permeability, on endotoxin lung injury after exercise.

REFERENCES

- 1. Mundie TG, Ripple GR, Dodd KD, Phillips YY. Medical Evaluation of Nonfragment Injury Effects Behind Defeated Armor. <u>RD&A Bulletin</u> Nov-Dec, 1989.
- 2. Newman JH. Sepsis and Pulmonary Edema. Clin. Chest Med. 6:371-391, 1985.
- 3. Brigham KL, Meyrick B. Endotoxin and Lung Injury. <u>Am. Rev. Respir. Dis.</u> 133:913-927, 1986.
- 4. Mundie TG, Januszkiewicz AJ, Rayburn DR, Martin DG, Ripple GR. The Effects of Conditioning and Maximal Incremental Exercise on Oxygen Consumption in Sheep. In Press, Am. J. Vet. Res. 1991.
- 5. Stavert DM, Lehnert BE. Maximal exercise exacerbates lung injury in NO₂ exposed rats. The Tovicologist 4:55, 1988.
- 6. Dodd KT, Mundie TG, Lagutchik MA, Martin DG. The Effects of Maximal Exercise on the Extent of Pulmonary Contusion in Sheep. Am Rev Resp Dis 143: A730, 1991.
- 7. Lehnert BE, Stavert DM. Relationship between pre-existing pulmonary edema induced by the inhalation of toxic gases and potentiation of lung injury by post-exposure exercise. Am Rev Resp Dis 143: a697, 1991.
- 8. Brigham KL, Bowers RE, Haynes J. Increased Sheep lung vascular permeability caused by <u>Escherichia coli</u> endotoxin. <u>Circ Res</u> 45:292-297, 1979.
- 9. Esbenshade AM, Newman JH, Lam PM, Jolles H, Brigham KL. Respiratory failure after endotoxin infusion in sheep: lung mechanics and lung fluid balance. <u>J Appl Physiol</u> 53:967-976, 1982.
- 10. Heflin AC, Brigham KL. Prevention by granulocyte depletion of increased vascular permeability of sheep lung following endotoxemia.. <u>J Clin Invest</u> 68:1253-1260, 1981.
- 11. Snapper JR, Hutchison AA, Ogletree ML, Brigham KL. effects of cyclooxygenase inhibitors on the alterations in lung mechanics caused by endotoxemia in the unanesthetized sheep. <u>J Clin Invest</u> 72:63-76, 1983.
- 12. Winn R, Harlan J, Nadir B, Harker L, Hildebrandt J. Thromboxane A₂ Mediates Lung Vasoconstriction but not Permeability after Endotoxin. <u>J. Clin. Invest.</u> 72:911-918, 1983.

- 13. Wisner D, Sturn J, Sutter G, Ellendorf B, Nerlich M. Thromboxane Receptor Blockade in an Animal Model of ARDS. <u>Surgery</u> 104:91-97, 1988.
- 14. Heflin AC, Brigham KL. Prevention by Granulocyte Depletion of Increased Vascular Permeability of Sheep Lung Following Endotoxemia. <u>J.Clin. Invest.</u> 68:1253-1260, 1981.
- 15. Brigham KL, Serafin W, Zadoff A, Blair I, Meyrick B, Oates JA. Prostaglandin E₂ Attenuation of Sheep Responses to Endotoxin. <u>J. Appl. Physiol.</u> 64:2568-2574, 1988.
- 16. Parker RE, Hardin JR, Brigham KL. Verapamil Attenuates Lung Vascular Responses to Endotoxin in Sheep. <u>J. Appl. Physiol.</u> 65:2138-2143, 1988.
- 17. Snapper JA, Bernard GR, Hinson JM, Hutchison AA, Loyd JE, Ogletree ML, Brigham KL. Endotomemia-Induced Leukopenia in Sheep. <u>Am. Rev. Respir.</u> Dis. 127:306-309, 1983.
- 18. Brigham KL, Bowers RE, McKeen CR. Methylprednisolone Prevention of Increased Lung Vascular Permeability Following Endotoxemia in Sheep. <u>J.</u> Clin. Invest. 67:1103-1110, 1981.
- 19. Zadoff AD, Kobayashi T, Brigham KL, Newman JH. Diethylcarbamazide on Pulmonary Vascular Responses to Endotoxin in Awake Sheep. <u>J. Appl. Physiol.</u> 60:1380-1385, 1986.
- 20. Smith CA, Jameson LC, Dempsey JA. Effects of altered CSF [H⁺] on ventilatory responses to exercise in the awake goat. <u>J Appl Physiol</u> 65:921-927, 1988.
- 21. Caputa M, Feistkorn G, Jessen C. Effects of brain and trunk temperatures on exercise performance in goats. <u>Pflugers Arch</u> 406:184-189, 1986.

APPENDIX A

SUMRYBEU XES

ANIMAL	Beauty								.]
DATE:	Dec 16 17	1992		<u>.</u>	•				
WT:	•	lb; Day 2	35 հե	İ	•				: :
Lung Wt:	200.3 gm			1				•	
	,	•		1				•	
	Control	Control	Pre	! ! Imm	30 min	60 min	Post	90 min	120 min
	Rest	Post Ex	Endo	Post Endo	Post Endo	Post Endo	Exercise	Post Endo	Post Endo
BLOOD GAS				į					
Arterial	•				i				.]
рН	7.395	7.421	7.366	7.352	7.336	7.324	7.304	7.311	7.329
pCO2	32.2	29.0	37.0	28.5	35.5	38.2	36.6	36.1	40.3
pO2	128.4	117.1	128.9	107.4	125.6	110.1	114.4	124.3	111.3
нсоз	18.8	18.0	20.2	15.1	18.0	18.9	17.3	17.3	20.2
TCO2	19.7	18.8	21.2	15.8	19.0	19.9	18.3	18.3	21.3
BE	3.5	3.4	3.2	-7.5	5.7	-5.3	7.1	6.9	4.2
	•		•	1	•	•			
Venous	•	•	•	•	•	•		•	
рН	clotted	no sample	7.348	7.308	7.303	7.297	7.205	7.259	7.292
pCO2	•		41.7	47.1	42.8	45.7	57.5	46.7	44.1
pO2	•	!	63.3	45.0	54.9	47.9	46.2	57.0	65.2
нсоз	•	i .	21.8	22.4	20.1	21.2	21.5	19.8	20.3
TCO2	•		23.0	23.7	21.3	22.5	23.1	21.1	21.5
BE	•		2.1	-2.2	4.4	-3.5	5.6	5.9	4.8
	i		:	-	•	•		•	
CO-OXIMETRY	1	†	-		•	•		•	
Arterial	1		•		•	• • • • • • • • • • • • • • • • • • •		•	
tHb	10.5	13.4	10.1	10.2	15.9	14.7	13.8	13.6	14.7
HbO2	96.1	95.7	95.9	94.8	95.5	94.9	95.3	95.5	94.6
Ньсо	1.3	1.6	1.2	1.2	1.4	1.3	1.3	1.3	1.4
MetHb	0.9	0.8	1.0	0.9	0.8	0.8	0.8	0.8	0.8
O2ct	14.0	17.8	13.5	13.4	21.1	19.4	18.3	18.1	19.3
SAT	98.3	98.1	98.1	96.8	97.6	96.9	97.3	97.5	96.7
RHb	1.7	1.9	1.9	3.1	2.3	3.0	2.6	2.4	3.2
O2cap	14.3	18.2	13.7	13.9	21.6	20.0	18.8	18.5	20.0
Ozcap	14.0	10.2			21.0		70.5	. , , , , ,	
Venous		• • • · · · · · · · · · · · · · · · · ·						•	
tHb	clotted	no sample	10.4	12.0	15.7	14.1	14.2	14.5	14.5
HbO2	Ciotteu	no sample	79.5	43.0	66.9	51.8	41.5	68.0	77.7
HbCO			1.2	0.7	0.8	0.7	0.5	0.9	1.0
MetHb	 		0.8	0.8	0.9	0.9		0.9	0.9
O2ct			11.3	7.2	14.6	10.2	1.0 8.2	13.7	15.7
SAT			80.1	43.7	68.1	52.6	42.1	69.2	79.2
RHb	·		19.5	55.5	31.4	46.6	57.0	30.2	20.4
O2cap		 	14.2	16.4	21.5	19.3	19.4	19.8	19.8
Огсар		 	17.2	10.4	21.5	13.3	15.4	15.0	13.8
WBC 10(9)/L		t · ·	16.7	5.4	E 0	A 7		AE	4.0
	4.239	48.760			5.9	2.624	16 205	4.5	3.279
VE	†	 	3.194	4.410	3.301	2.624	16.305	2.545	
Fi02	.2092	.2092	.2085	.2086	.2081	.2073	.2073	.2089	.2089
FiCO2	.0008	.0008	.0008	.0009	.0013	.0011	.0011	.0011	.0008
FeO2	.1891	.1847	.1868	.1927	.1844	.1872	1795	.1877	.1876
FeCO2	.0164	.0241	.0186	.0140	.0188	.0182	.0267	.0207	.0196
VO2/kg	5.043	71.031	4.358	4.415	4.930	3.315	28.492	3.383	4.415
VCO2/kg	3.897	67.552	3.570	3.637	3.635	2.829	26.237	3.134	3.884
HR		ļ · · · · · · · · · · · · · · ·	101	93	108	113	174	124	122
MAP			111	118	92	73	103	113	91
PAP	-	} • •	. 8	30	17	17	22	18	20
PAWP		 	. 1	11		2		2	7
CVP	<u> </u>	<u> </u>	0		2	<u>!</u>		6	-10

SUMRYBLU XLS

ANIMAL	Beauty					•	•			
DATE:	•	(Control Ex	ercise)	•	•			•	,	•
	1					•	•	;		
	Rest	1.5 min	3.0 min	4.5 min	6 0 min	7.5 min	9,0 min	10.5 min	12.0 min	, 13.5 min
BLOOD GAS	•	: ;			•					•
Arterial					•			•	•	
рН	7.395	7.408	7.403	7.411	7.399	7.400	7.409	7.361	7.409	7.421
pCO2	32.2	32.4	32.7	32.2	34.4	30.7	31.6	37.4	32.7	29.0
pO2	128.4	139.2	120.2	123.2	126.8	135.3	120.2	101.6	117.8	117.1
нсоз	18.8	19.5	19.4	19.5	20.3	18.1	. 19.0	20.1	19.7	18.0
TCO2	19.7	20.4	20.3	20.4	21 2	19.0	19.9	21.2	20.6	18.8
BE	3.5	∙2.6	2.8	2.5	2 2	3.9	. 29	3.3	. 2.4	. 3.4
Venous	•			· .	•	•	:	!	•	
рН	clotted	clotted	7.345	7.360	7.355	7.343	7.345	7.309	no sample	no sample
pCO2	•		47.3	45.0	43.7	40.3	43.9	49.2		
pO2			51.1	50.7	525	52.1	47.8	50.4	•	
нсоз	•	· · · · · · · · · · · · · · · · · · ·	24.6	24.2	23 3	20.8	22.8	23.5		
TCO2			25.9	25.5	24.5	22.0	24.0	24.8		•
BE			0.1	0.2	0.6	-2.8	-1.1	1.6	•	
CO-OXIMETRY			į			•		•	• -	÷
Arterial	1						•	•	•	: !
tHb	10.5	11.7	11.9	12.2	13.1	11.5	13.3	13.6	14.5	13.4
HbO2	96.1	96.2	96.1	96.1	96.1	96.3	95.1	93.9	95.4	95.7
НЬСО	1.3	1.4	1.3	1.6	1.6	1.5	1.6	1.4	1.6	1.6
MetHb	0.9	0.9	1.0	0.7	0.6	0.9	0.7	0.7	0.7	0.8
O2ct	14.0	15.6	15.9	16.3	17.5	15.4	17.6	17.8	19.2	17.8
SAT	98.3	98.5	98.4	98.4	98.3	98.7	97.3	95.9	97.6	98.1
RHb	1.7	1.5	1.6	1.6	1.7	1.3	2.6	4.0	2.3	1.9
O2cap	14.3	15.9	16.2	16.6	17.8	15.6	18.1	18.5	19.7	18.2
Venous	+			40.0	• • • •	110		140		
tHb	clotted	clotted	13.5	13.2	13.7	11.8	14.2	14.8	no sample	no sample
HbO2			61.8	62.0	63.7	62.9	55.0	58.5		
ньсо	+		1.0	1.0	1.1	1.0	1.0	0.9		
MetHb O2ct	<u> </u>		0.7 11.6	0.8	0.7 12.1	0.7 10.3	0.7 10.9	12.0		
SAT			62.9	63.1	64.9	64.0	56.0	59.5		
RHb	 		36.5	36.2	34.5	35.4	43.3	39.9	· · · · · · · · · · · · · · · · · · ·	
O2cap	-		18.4	18.0	18.7	16.1	19.4	20.2	· · · · · · · · · · · · · · · · · · ·	
			/ 3		NETI					
	1									
										
		 			. –					
			· · · · · · · · · · · · · · · · · · ·							
					- ·		•	-		
			- · · · · · · · · · · ·							
								-		
	. †						,			
							,			†
		}					l			-
			. •				!			
						i				
	-+								l	
		L		1		<u> </u>				

Beauty (12/17/92)

Beauty (12/16/92)

APPENDIX B

SUMRYJES.XES

		·							
ANIMAL	Jessica	1000		•		•			
DATE:	Dec 16 17		72.0	•	•	•			7
WT:		b; Day 2 =	73 lb 1	•	•	•		•	!
Lung Wt:	483.0 gm	•	•	•	•			•	•
ĺ			0		30 min	60 min	Post	90 min	120:-
	Control	Control	Pre	Imm Para Frada	30 min	Post Endo		Post Endo	120 min
	Rest	Post Ex	Endo	, Post Endo	, Post Endo	FOST Endo	Exercise	, FORT Ellido	POST ENGO
BLOOD GAS		:	İ	•	•	•		•	•
Arterial	7.267	7 202	7 204	7.389	7.392	7.382	7.380	7.398	7.395
pH_	7.367	7.393	7.394 36.6	35.0	34.0	35.3	32.9	34.1	34.3
pCO2	31.6	28.0	†	95.0	110.5	117.7	115.4	110.7	99.0
pO2	119.8	127.2	166.9	20.1	19.7	20.0	18.5	20.0	20.0
HCO3	17.2	16.3	21.3	•	20.6	21.0	19.5	21.0	20.9
TCO2	18.1	17.0	22.3	21.1		, 21.0 2.9	4.1	21.0	. 20.5
BE	-5.5	5.5	-1.6	2.6	2.8	2.9	4.1	2.4	. 4.5
			!	:		•		†	•
Venous	7.369	7.350	7.374	7.374	7.362	7.349	7.297	7.352	7.360
pH	38.3	31.4	41.4	41.7	39.7	41.2	50.1	38.3	39.7
pCO2	62.4	50.4	59.3	44.9	. 53.7 52.5	51.8	43.5	54.5	56.3
PO2 HCO3	21.1	16.5	23.0	23.2	21.4	21.6	23.2	20.2	21.3
1	22.1	17.4	24.2	24.3	22.5	22.8	24.6	21.3	22.4
TCO2	· - † · · · · · · ·	-5.9	-0.4	0.0	1.8	· 22.0	-1.8	3.1	-2.1
BE	-2.1	5.8	-0.4	0.0	- 1.0	-2.0	1.0		2.1
CO-OXIMETRY			 	+				•	
Arterial					•	†	•	•	
	9.2	11.8	10.3	12.2	14.7	14.7	14.5	14.6	14.3
tHb			97.0	94.4	95.9	95.2	95.2	95.4	94.6
HbO2	96.8	96.2	·	-†	†	† ·- · · · · · · · · · · · · · · · · · ·	0.5	0.6	0.6
НЬСО	0.4	0.5	0.2	0.6	0.5	0.5		†	
MetHb	1.1	1.0	1.1	0.7	0.9	0.9	0.8	0.8	0.8
O2ct	12.4	15.8	13.9	16.0	19.6	19.5	19.2	19.4	18.8
SAT	98.3	97.7	98.3	95.6	97.3	96.6	96.5	96.8 3.2	95.9 4.0
RHb	1.7	2.3	1.7	4.3	2.7	3.4	3.5 19.9	20.0	
О2сар	12.6	16.2	14.1	16.7	20.1	20.4	19.9	20.0	19.6
Venous									
tHb	10.4	11.3	10.5	12.5	14.3	14.6	14.2	14.6	14.2
Нь02	81.2	67.8	77.3	52.4	68.0	69.5	46.5	72.5	74.8
НЬСО	0.3	0.2	0.2	0.1	0.2	0.2	0.0	0.3	0.3
MetHb	1.0	1.0	0.7	0.8	0.7	0.9	1.0	1.0	1.0
O2ct	11.7	10.6	11.3	9.1	13.5	14.1	9.2	14.7	14.8
SAT	82.3	68.6	78.0	52.9	68.5	70.3	47.0	73.5	75.8
RHb	17.5	31.0	21.8	46.7	31.1	29.4	52.5	26.2	23.9
O2cap	14.3	15.5	14.5	17.2	19.7	20.1	19.5	20.0	19.5
•									
WBC 10(9)/L		·	7.0	2.3	2.6	2.3		1.4	1.3
VE	5.977	65.228	1.770	4.122	6.080	4.963		5.427	4.470
FiO2	.2084	.2084	.2090	.2089	.2081	.2083		.2081	.2081
FiCO2	.0012	.0012	.0008	.0008	.0010	.0012		.0013	.0011
FeO2	.1838	.1848	.1829	.1871	.1939	.1884		.1876	.1837
FeCO2	.0242	.0251	.0232	.0183	.0131	.0192		.0190	.0230
VO2/kg	4.462	46.392	1.451	2.834	2.786	3.101		3.499	3.428
VCO2/kg	4.200	46.982	1.245	2.269	2.372	2.805		3.028	3.086
HR			78	79	105	102	175	116	125
MAP			106	144	117	104	109	102	117
PAP			13	37	34	28	33	26	29
PAWP			4	12	9	6		8	3
CVP			10	16	_6_	8	15	4	7

SUMRYJES.XES

ANIMAL:	Jessica							•		•
DATE:	1	(Control Ex	ercise)		i 1		•			•
								•	•	•
	Rest	1.5 min	3.0 min	4.5 min	6.0 min	7.5 min	9,0 min	10.5 min	12.0 min	13.5 min
BLOOD GAS	<u>†</u>					t •				,
Arterial						,				
рН	7.367	7.388	7.391	7.402	7.413	7.396	7.400	7.389	7.393	
pCO2	31.6	25.5	30.9	27.6	18.9	27.3	26.8	26.4	28.0	
pO2	119.8	122.1	122.1	125.7	136.7	126.1	156.1	133.4	127.2	
HCO3	17.2	14.6	17.9	16.4	11.5	16.0	15.8	15.2	16.3	
TCO2	18.1	15.3	18.7	17.2	12.0	16.7	16.6	15.9	17.0	•
BE	-5.5	6.9	4.3	5.2	8.7	-5.7	5.7	6.5	5.5	•
Venous								•	•	
рН	7.369	7.370	7.358	7.367	7.373	7.376	7.374	7.357	7.350	•
pCO2	38.3	32.1	38.0	37.7	35.8	37.8	36.2	38.8	31.4	•
ter to the terminal contract of the terminal c	62.4	58.6	62.3	62.2	59.9	61.7	53.7	54.9	50.4	•
pO2	•	1					20.1		16	
HCO3	21.1	17.7	20.3	20.6	19.8	21.1	•	20.7	•	•
TCO2	22.1	18.6	21.4	21.7	20.8	22.2	21.1	21.8	17.4	•
BE .	-2.1	-4.7	-3.0	-2.5	-3.0	-1.9	2.6	-2.6	-5.9	-
CO-OXIMETRY	= "						:			
Arterial	1						•			
tHb	9.2	8.3	9.9	9.3	6.6	10.1	11.2	10.8	11.8	; <u> </u>
НьО2	96.8	96.9	97.0	97.9	97.1	96.2	96.8	96.4	96.2	
НЬСО	0.4	0.5	0.3	-0.1	0.1	0.5	0.4	0.4	0.5	
MetHb	1.1	0.9	1.1	0.8	1.2	1.0	1.1	1.0	1.0	•
O2ct	12.4	11.2	13.3	12.7	8.9	13.5	15.1	14.5	15.8	
SAT	98.3	98.3	98.4	98.6	98.4	97.7	98.3	97.8	97.7	
RHb	1.7	1.7	1.6	1.4	1.6	2.3	1.7	2.2	2.3	
O2cap	12.6	11.4	13.6	12.8	9.1	13.8	15.3	14.8	16.2	
Venous	ļ									
tHb	10.4	9.7	11.3	11.8	11.4	clotted	12.0	12.8	11.3	
НьО2	81.2	77.0	81.1	79.3	77.9		71.8	74.0	67.8	L <u></u>
НЬСО	0.3	0.3	0.4	0.3	0.3		0.2	0.3	0.2	
MetHb	1.0	0.9	0.9	0.9	0.8		0.9	0.9	1.0	
O2ct	11.7	10.4	12.7	13.0	12.3		12.0	13.2	10.6	
SAT	82.3	78.4	82.2	80.3	78.8		72.6	74.9	68.6	
RHb	17.5	21.3	17.6	19.5	21.0		27.1	24.8	31.0	·
О2сар	14.3	13.3	15.5	16.2	15.7		16.5	17.6	15.5	
	 									
	+			· ·						
	1	<u> </u>				-				-
	T									
	1	1 1			=					
		† · · · · †		• †						
	<u></u>							<u></u>		

Jessica (12/16/92)

Jessica (12/17/92)

